

Components' and Materials' Performance for Advanced Solar Supercritical CO₂ Powerplants

COMPASsCO₂

General Project Presentation

Daniel Benitez German Aerospace Center (DLR)

> **sCO2-Flex Final Event** June 16th, 2021

> > **COMPASsCO**₂

This project has received funding from the European Union's Horizon 2020 Research and Innovation Action (RIA) under grant agreement No. 958418.

- About COMPASsCO2
- Technical Description
- Current results
- Cooperation potential

The project "**Components' and Materials' Performance for Advanced Solar Supercritical CO2 Powerplants**" is funded by the EU's H2020 Research and Innovation Action supported by the "Sustainable Process Industry through Resources an Energy Efficiency" (<u>spire2030.eu</u>) association.

Project start: November 2020 Duration: 4 years

sCO2-Flex Final Event, June 16th 2021

About COMPASsCO2

The main goal is to integrate two innovative systems: CSP plants with particles and sCO2 Brayton power cycles

→ Project's focus is development of materials under harsh conditions

Develop highly durable and efficient <u>particles</u> for CSP plants

- Develop optimized structural materials for heat exchanger tubes in contact with particles and sCO2
- Demonstrate <u>material lifetime</u> by measuring and modeling the degradation of the materials
- Design, construct and operate a <u>particle/sCO2 heat exchanger</u> section in order to validate the degradation and heat transfer models
- Evaluate the <u>economic benefits</u> of a CSP-sCO2 plant using the materials and components developed in COMPASsCO2 and compare it with stateof-the-art CSP plants

Brayton cycle selection – Approach

- Literature study to identify most suitable sCO2 cycle and process parameters
 Non-conclusive (see Del1.1)
- 2) Simplified annual yield model to estimate levelized cost of electricity for a large number of sCO₂ cycle configurations
 - 10 cycle layouts6 parameters

sCO2 cycles
01_simple
02_simple_RH
03_simple_IC
04_simple_RH_IC
05_recomp
06_recomp_RH
07_recomp_IC
08_recomp_RH_IC
09_partC_RH_IC
10 partC IC

Parameter	Unit	Range
Turbine inlet temperature	[°C]	550700
Compressor inlet pressure	[bar]	45100
Recuperator TTD	[K]	5
(U*A) _{cooler/IC}	[MW _{th} /K]	18
Recompression fraction	[%]	2544
TTD PHX,high-pressure	[K]	5300

RH: reheat IC: intercooler partC: partial cooling TTD: terminal temperature difference *U***A*: conductance-area product PHX: primary heat exchanger

COMPASsCO₂

Brayton cycle selection – Results

	Cycle	LCOE [USD-cent/kWe h]	η _{PB,net} [%]	T _{PHX,sCO2,in} [°C]	T _{PHX,sCO2,in,RH} [°C]
	01	12.4	42.7	442	-
+	05	13.4	47.8	504	-
	06	16.3	48.9	577	620
	09	15.0	49.0	533	583
	10	13.3	47.2	438	493

COMPASsCO2 focuses on an increased thermal efficiency and on lowering the cost of high-temperature, highefficiency systems.

Parameter	Unit	Value
Pre-compressor inlet pressure	[bar]	45
Main compressor inlet pressure	[bar]	80
Recuperator TTD	[K]	5
Pre-cooler U*A	[MW _{th} /K]	3.5
Intercooler U*A	[MW _{th} /K]	6.2
Recompression fraction	[%]	44

Solar particle loop- Boundary conditions

Parameter	Value	Comment [Source]	
Location	Postmasburg,	Good solar resource	
	South Africa		
Power block net rating	112.8 MW _e	Based on cycle chosen in Deliverable 1.1	
Particle inlet temperature to the HX	900 °C		
Max. particle temperature	~1000 °C	Due to inhomogeneous temperature	
		distribution	
Receiver thermal power @ design point	96.23 MW _t	Per unit	
Number of towers and receivers	6	multi-tower system	
Thermal storage capacity	12 h	hours of discharging at full load	

LCOE-optimized solar field design

Parameter	Unit	Value
Height of receiver center above ground	[m]	133.6
Heliostat aperture area (per tower)	[m²]	170 000
Particle inventory (per tower)	[t]	5172
Field efficiency, annual average	[-]	54.2 %
Receiver efficiency, annual average	[-]	87.4 %

Heliostat field layout showing average annual efficiency per heliostat (color code)

German Aerospace Center

dp: design point

 ➢ Principle → moving bed of hot particles crossing bundles of horizontal tubes containing sCO2
➢ Simulations performed with Comsol Multiphysics

▲ 1×10³

Different alloys were considered for the tubes

Calculations based on the ASME code highlighted two alloys to withstand the operating conditions (P_{sc02} = 265 bars and T_{tube,avg} = 725°C)
Alloy 740
Haynes 282

Parameters	Particles (high pressure PHX)	Particles (low pressure PHX)	sCO2 (high pressure PHX)	sCO2 (low pressure PHX)
Inlet temperature [°C]	900	900	532.8	583.4
Outlet temperature [°C]	582.8	633.4	700	700
Inlet pressure [bar]	/	/	265.3	110.4
Outlet pressure [bar]	/	/	260	108.2
Mass flowrate [kg/s]	355.9	288.3	632.6	632.6

Preliminary particle heat exchanger design

The main geometric variables of the HEX were calculated

Design parameter	Unit	High pressure PHX	Low pressure PHX
Tube external diameter	[mm]	30.8	30.8
Tube wall thickness	[mm]	2.6	2.6
Number of tubes in parallel	[-]	208	500
Tube length per row	[m]	10	4
Number of rows	[-]	33	22

≻66.5 tons of 30.8mm diameter tubes made of alloy 740

Heat Exchanger's tubes - Methodology

Mechanical properties

700°C Haynes 282, IN 740

https://www.osti.gov/servlets/purl/1365201

Daniel Benitez, DLR

sco2-Flex Final Event, June John A. Siefert, Cara Libby, and John Shingledecker, "Concentrating solar power (CSP) power cycle improvements through application of advanced materials, AIP Conference Proceedings" 1734, 070030 (2016); https://doi.org/10.1063/1.4949177

Corrosion+ mechanical degradation combined

Daniel Benitez, DLR

COMPASsCO₂

Corrosion (due to pressure and thermic cycles)

sCO2-Flex Final Event, June 16th 2021

COMPASsCO₂

Autoclaves for **erosion tests** at high T with a rotating multisample holder (specimen's movement)

Ciemat

Oxidation tests at 700 °C atmospheric CO₂

27 creep machines to perform uniaxial creep tests at temperatures below 1000 ° C in air

Thermocyclic testing in CO₂

Daniel Benitez, DLR

Creep at 700 ^oC in atmospheric CO₂

Heat Exchanger's tubes - Alternative ways

Develop new BCC materials

- Corrosion and erosion resistant Cr-NiAl alloys
- Corrosion and erosion resistant Cr-Si alloys

> Apply coatings of newly developed materials

- Deposit the coatings by cost effective methods
 - \Rightarrow Slurry
 - Pack cementation

Cr Bcc

sCO2-Flex Final Event, June 16th 2021

Develop new ceramic particles exhibiting properties and shape features with improved performance in CSP application vs state-of-the-art media (*ie* Sintered Bauxite/Proppants)

State-of the art particle

New particle candidates

- Explore new compositions and surface textures:
 - Two process platforms are investigated to get spherical particles: granulation and electrofusion
 - Various compositions investigated to maximize density and heat capacity (Cp)
 - Use of recycle raw materials to optimize cost position
 - Possibility to produce size ranges from ~300µm to several mm depending on needs
- Particles will be produced in lab scale to pilot scale volumes (40 to 600kg batches)
- Particle evaluation and benchmarking vs state-of-the-art:
 - Extensive physicochemical and optical characterizations
 - Basic mechanical tests and attrition / impact resistance through in-house equipment
 - Cost estimation
- Expected results:
 - Improved performance with solar absorptance >95%, heat capacity > 1.2 J/gK and thermal stability >900°C
 - Increase lifetime (particle mass loss by attrition < 0.5 kg/MWh_{thtransferred}, useable lifetime > 10 years)
 - Low cost ~1 €/kg

Main results/outcome

Mechanical characterizations

Impact test / blasting device

SAINT-GOBAIN

Particle chute test

Daniel Benitez, DLR

COMPASsCO₂

Main results/outcome

Optical characterizations and particle coatings

- Particle color stability (T° and time) is a potential issue to ensure optimum solar absorption during operation
 - \rightarrow propose to apply coatings on particle surface
 - → different strategies investigated (DLR, CIEMAT): pigment vs slurry; post sintering T°...

- Absorptance (α) and emittance (ε) measurement through UV-VIS-NIR spectrophotometer (CIEMAT, DLR)
 - Check impact of particle composition, coating, aging, etc...
 - First measurements done on state-of-the art particle for calibration

Design Optimization and Degradation Modelling

Effect of microstructure on strength and engineering material properties

STRUCTURE-PROPERTIES-PERFORMANCE: Effect of microstructure and micromechanics on fatigue, thermomechanical and wear performance and product lifetime

Al/Machine learning: Material discovery, design, and optimization

Dissemination of Results

COMPASsCO₂

- Optimization of sCO2 Brayton cycles for CSP applications
- Development of particles as heat carriers for high temperature processes (>1000°C)
- Development of structural materials for harsh conditions regarding temperature, pressure, erosion, oxidation, corrosion, thermal cycling, etc.
- Testing and modelling of material degradation
- Scientific publications, joint dissemination events, etc.

Thank you for your attention!

contact@compassco2.eu

Coordinator: Daniel Benitez daniel.benitez@dlr.de

Communication and Dissemination: Abdelghani El Gharras abdelghani.elgharras@ome.org

sCO2-Flex Final Event, June 16th 2021

Technical Description (backup)

sCO2-Flex Final Event, June 16th 2021

Technical Description (backup)

CentRec[™] receiver

- Very high outlet temperatures (1000 °C)
- High thermal efficiency (≈ 90 %)
- Fast ramping
- Low cost
- Not yet commerically demonstrated

Ceramic particles

- No practical temperature limitations
- Low cost
- Medium distance transport feasible
- Long-term durability unknown

Direct absorption

- Robust
- Flexible
- Low-cost thermal storage system

Solar Tower

Cost effective

Heliostat Field

Low TRL

Rather conventional design Low TRL challenging operating conditions

COMPASsCO₂

sCO2-Flex Final Event, June 16th 2021

Particle transport system