

sCO2-flex

sCO2-flex Final Event

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764690-

Supercritical CO2 cycle for FLEXible power plant

Our aim: develop and validate a design of a 25MWe Brayton cycle using supercritical CO2 that will enable an increase in the operational flexibility"

sCO2-Flex: Our consortium

Main challenges

Main equipments development

Turbine

Mechanical design
5 stages
88,4% isentropic efficiency

Compressor

5.4MW prototype
Dry Gas Seal
(DGS) system
From 100% to
20% load
Test campaign

Heat exchangers

Several prototypes: PCHE/ PFHE

Pressure test: 1200bars

Boiler

Hot CO₂ T°: 620°C

Thermal load: 59 MW

Efficiency: 92.5 %

Engineering Design

1: boiler house,

2: turbine,

3: main compressor,

4: secondary compressor,

5: low- and hightemperature recuperators,

6: CO2 inventory management tanks,

7: heat sink,

8: stack,

9: fuel storage area,

10: electrical substation,

11: transformers,

12: electrical &

administration building

Reduced Footprint, very compact design

Plant Operation

Off-design and dynamic Performance:

- Several operating strategies tested
- Sliding pressure for turbomachinery
- Variable speed fans for heat rejection unit (HRU)
- Working fluid inventory can be varied to set the cycle minimum pressure
- 5%/min load reduction
- Compatible with primary frequency control on the grid

Potentiel environmental impacts

- Environmental Impact
 - 8% less than the reference plant in operation,
 - 4% less overall during its entire life cycle
- Reduced footprint
- Reduced materials for building and main equipment
- Social code of conduct for responsible research in the field of energy

Cost estimates for 25 Mwe cycle

25 Mwe Cycle under 100M€ (as expected) with large margins of reduction

100MWe cycle 2 to 2.5 times higher

Next steps

Equipment improvement is possible

- Turbine and compressor efficency
- Heat Exchangers design

Use for other applications

- Cycle without Boiler, could be used for other applications (CSP, biomass, heat recovery...)
- Study operation and efficiency with different cooler systems

CAGNAC Albannie

Albannie.cagnac-1@edf.fr

EDF Lab Chatou Département MFEE 6 quai Watier 78400 Chatou

France

16.06.2021